There are 526 , 915 , 620 nonisomorphic one - factorizations of K 12

نویسندگان

  • Jeffrey H. Dinitz
  • David K. Garnick
  • Brendan D. McKay
چکیده

We enumerate the nonisomorphic and the distinct one-factorizations of K12. We also describe the algorithm used to obtain the result, and the methods we used to verify these numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

There are 1,132,835,421,602,062,347 nonisomorphic one-factorizations of K14

We establish by means of a computer search that a complete graph on 14 vertices has 98,758,655,816,833,727,741,338,583,040 distinct and 1,132,835,421,602,062,347 nonisomorphic one-factorizations. The enumeration is constructive for the 10,305,262,573 isomorphism classes that admit a nontrivial automorphism.

متن کامل

On the Enumeration of One-Factorizations of Complete Graphs Containing Prescribed Automorphism Groups

In this paper we use orderly algorithms to enumerate (perfect) one-factorizations of complete graphs, the automorphism groups of which contain certain prescribed subgroups. We showed that, for the complete graph Ki2, excluding those one-factorizations containing exactly one automorphism of six disjoint cycles of length two, there are precisely 56391 nonisomorphic one-factorizations of Ki2 with ...

متن کامل

Holey factorizations

Holey factorizations of Kv1,v2,...,vn are a basic building block in the construction of Room frames. In this paper we give some necessary conditions for the existence of holey factorizations and give a complete enumeration for nonisomorphic sets of orthogonal holey factorizations of several special types.

متن کامل

Two-factorizations of Small Complete Graphs Ii: the Case of 13 Vertices

We establish that for each of the 5005 possible types of 2factorizations of the complete graph K13, there exists at least one solution. We also enumerate all nonisomorphic solutions to the Oberwolfach problem

متن کامل

Simple groups with the same prime graph as $D_n(q)$

Vasil'ev posed Problem 16.26 in [The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed.,Sobolev Inst. Math., Novosibirsk (2006).] as follows:Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? Conjecture: $k = 5$.In [Zvezdina, On nonabelian simple groups having the same prime graph a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994